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Abstract-Experiments and supplementary numerical solutions have been performed to study the melting 
of a solid encapsulated in a horizontal tube. In one set of experiments, the solid was constrained not to 
move, while in a second set of experiments the solid was able to fall freely under gravity. In the latter (i.e. 
unconstrained) case, the lower portion of the solid was separated from the tube wall by a narrow, liquid- 
filled gap. The numerical solutions enabled the rates of melting at the lower and upper portions of the 
unconstrained solid to be determined. At a given duration of the melting period, the amount of mass 
melted in the unconstrained mode exceeded that melted in the constrained mode by 5(rlOO%, with a 
similar gain in energy transfer. For the unconstrained mode, about 90% of the melting occurred at the 
lower portion of the solid. Photographic evidence demonstrated that the melting process in the constrained 
mode is intrinsically three-dimensional, while in the absence of end effects the unconstrained-mode melting 

is two-dimensional. 

INTRODUCTION 

MELTING of a solid contained in a horizontal tube has 
evoked considerable current interest, as evidenced by 
the recent publication of several experimental and 
analytical studies, of which refs. [l-7] are represen- 
tative. This interest has been motivated primarily by 
the use of solid-liquid phase change for the storage of 
thermal energy. In these investigations, consideration 
was given either to a melting solid which is constrained 
to prevent its possible movement due to gravity [l-5] 
or to a solid which is free to fall under gravity [6, 
71. In the first case, the melting solid is completely 
surrounded by the liquid melt and the energy needed 
for the melting is transported from the tube wall to 
the solid-liquid interface by natural convection in the 
liquid. 

In the second case, the solid is pressed by gravity 
against the lower portion of the tube wall. However, 
touching contact between the lower portion of the 
solid and the wall is not achieved. Rather, owing to 
the continuous production of liquid by the melting 
solid, a thin, liquid-filled gap necessarily exists 
between the solid and the wall. The liquid produced 
by the melting is continuously squeezed out of the gap 
by the force which presses the solid against the wall. 
The energy needed for the melting of the solid which 
borders the gap is transported by conduction across 
the gap. On the other hand, the melting of the upper 
portion of the solid is controlled by natural convection 
in the liquid melt which occupies the space between 
the solid and the upper portion of the tube wall. 

The two aforementioned modes of melting will be 
encountered frequently during the present paper and 
it will be convenient to assign brief, descriptive desig- 
nations to them. The case of the constrained solid 
will be designated as the centered mode, while the case 

where the solid is pressed against the tube will be 
referred to as the wall-adjacent mode. 

Despite the available literature on melting in a hori- 
zontal tube, there are a number of key issues which 
remain unresolved. Among these, perhaps the issue of 
greatest practical importance is the relative mag- 
nitudes of the melting rates in the centered and wall- 
adjacent modes. This assessment .can be made with 
the highest degree of certainty if experiments on the 
two modes were to be conducted using the same 
apparatus, with everything else being identical. It 
appears that the same apparatus was used in refs. [4, 
71, although ref. [7], the more recent of the two papers, 
makes no mention of this. Furthermore, different 
types of results are presented in these two works, 
virtually ruling out a comparison between the centered 
and wall-adjacent modes. 

Another key issue that remains unresolved is 
whether the melting process is two- or three-dimen- 
sional (i.e. absence or presence of axial variations). In 
the available analytical work on the problem, it has 
been standard to assume that the process is two- 
dimensional. In the experimental work, the common 
practice has been to use tubes with relatively small 
length-to-diameter ratios, e.g. 1.25 [4, 71 and 1.56 [5], 
which tends to exaggerate the role of hydrodynamic 
end effects and also, perhaps, of thermal end effects. 
The melting rates reported in refs. [4, 5, 71 were 
obtained from optical methods under the assumption 
that axial variations were absent. 

A third issue, which is pertinent only to the wall- 
adjacent mode, is the relative rates of melting at the 
lower and upper portions of the solid, respectively 
controlled by conduction across the thin, liquid-filled 
gap and by natural convection in the pool of liquid 
melt. This issue was not addressed in the analysis of 
ref. [7]. Even if it had been examined there, con- 
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NOMENCLATURE 

A surface area 
C specific heat of liquid 
c,,, specific heat of solid 
E mar maximum value of E,,, 

E, sensible energy input to liquid 
E ,ot sum of El and E, 

E* energy to melt mass M 
E. *,max energy to melt mass M,,, 
Fo Fourier number, ut/R2 

9 force of gravity 
k thermal conductivity of liquid 
L length of tube 
M melted mass 
M,,, total mass available for melting 
ni rate of melting 
N number of cells 
Nu local Nusselt number, [q/( T, - T*)] R/k 

P pressure 

Q surface-integrated rate of heat transfer 

4 local rate of heat transfer per unit area 
R radius of tube 
Ra Rayleigh number, g/?( T, - T *)R3/uv 

r radial coordinate 

S, subcooling parameter, equation (22) 

Ste Stefan number, c(T, - T *)/I 
(Ste)* corrected Ste for subcooling of solid 
T temperature 

Tb liquid bulk temperature 

T, water bath temperature 
T * melting temperature 
t time 
u velocity in r-direction 
V mean velocity at mouth of gap 
V velocity in O-direction 
W average gap thickness. 

Greek symbols 
thermal diffusivity of liquid 

; thermal expansion coefficient 
e angular coordinate, Fig. 1 
1 latent heat of melting 

P viscosity of liquid 
V kinematic viscosity of liquid 

P density of liquid. 

Subscripts 
lower on lower surface of solid 
upper on upper surface of solid. 

siderable uncertainty would have occurred in the 
upper-surface melting rates since the natural con- 
vection was treated in an oversimplified manner (the 
source of the assumed heat transfer coefficient is not 
cited). 

The foregoing discussion sets the stage for the pres- 
ent investigation, which includes both experimental 
and numerical work. Experiments utilizing the same 
apparatus were performed for both the centered and 
wall-adjacent modes of melting. These experiments 
were carried out over a wide range of melting period 
durations (described in dimensionless terms by the 
product of the Fourier and Stefan numbers) and for 
four values of the difference between the tube wall 
temperature and the melting temperature (5 Stefan 
number). A length-to-diameter ratio of the con- 
tainment tube equal to 5 was used in conjunction with 
foam insulation to minimize end effects. The phase- 
change medium was 99% pure n-eicosane paraffin 
with a melting temperature of 36.3”C. The results of 
these experiments yielded a definitive comparison of 
the two modes of melting. Also, the results for the 
individual modes are compared with the relevant 
literature. 

The issue of the axial uniformity or nonuniformity 
of the melting process (i.e. two- or three-dimen- 
sionality) was also investigated experimentally, with 
the key results being obtained from photographs of 
the residual solid which remained at the end of the 
melting period. 

The subdivision of the total amount of melting 
between the upper and lower surfaces in the wall- 
adjacent mode was determined from finite-different 
solutions for natural convection in the odd-shaped 
region between the upper surfaces of the melting solid 
and the tube wall. 

Apparatus 

EXPERIMENTS 

The containment tube within which the melting 
occurred consisted of a cylindrical brass sleeve with 
insulating end caps. The internal dimensions of the 
tube were 3.810 x 19.05 cm (diameter x length), yield- 
ing an aspect ratio of 5. Brass was used for the tube 
body because of its relatively high thermal con- 
ductivity and easy machinability (the sleeve was fab- 
ricated by boring a solid rod). The bore of the sleeve 
was polished and lapped to a mirror finish, while its 
external surface was turned to yield a 0.318 cm wall 
thickness. Copper was considered for the sleeve but 
was rejected because of its less favorable machining 
characteristics, while aluminum reacts electro- 
chemically with water and was, therefore, unsuit- 
able since the tube was immersed in a water bath 
during the experiment. 

Each end cap consisted of a section of Delrin plastic 
rod that had been hollowed out to create an insulation 
cavity. The cavity was filled with a 2.54-cm-thick 
cylindrical block of closed-pore polystyrene (Styro- 
foam). With the insulation in place, the cavity was 
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sealed with a thin Delrin disk, which also served as 
the face of the end cap which contacted the paraffin. 

For the experiments on melting in the centered 
mode, one of the end caps was modified to fix the 
solid and prevent its fall to the bottom of the tube. 
Specifically, the thin Delrin disk which closed the in- 
sulation cavity was fitted with a finger-like Dehin 
rod, 0.635 cm in diameter and 3.81 cm long, which 
extended axially into the tube bore. The rod was 
threaded to facilitate the adhesion of the solid 
paraffin to it. 

To support the tube so that its axis would be hori- 
zontal, a brass shaft was attached perpendicular to 
the outside surface of the brass sleeve, midway 
between the ends. With the tube horizontal, the shaft 
pointed vertically upward. The attachment of the 
shaft to the tube was facilitated by a raised boss 
which had been left on the sleeve during its fabri- 
cation. 

The shaft served not only to support the tube but 
also as a reservoir to receive the excess volume of the 
liquid melt which is created by the density decreases 
which accompany the melting and the subsequent 
temperature increase of the liquid. For this purpose, 
the shaft was hollowed out. At the top of the shaft, 
the hollowed-out space was vented to the atmosphere 
to facilitate the escape of the air displaced from the 
space by the incoming liquid melt. 

Two constant-temperature water baths were used 
during each melting experiment. Prior to the melting 
period, one of the baths was employed to bring the 
tube and the encapsulated solid paraffin to a uniform 
temperature just below the 36.3”C melting tempera- 
ture of the paraffin. The second bath served as the 
thermal environment for the tube during the melting 
period. It consisted of a large, well-insulated stainless- 
steel tank filled with water. The water was highly 
agitated to achieve a large value of the heat transfer 
coefficient at the external surface of the containment 
tube. An immersed temperature controller maintained 
temperature constancy to within 0.1 “C (verified by an 
ASTM-certified thermometer). A strut which over- 
hung the tank was provided for the attachment of the 
support shaft of the containment tube. 

The key quantities measured during the course of 
the experiments were the masses of the solid at the 
beginning and end of the melting period, the tem- 
peratures of the thermal equilibration and melting 
environment baths, and the temperature of the liquid 
at the end of the melting period. These measurements 
were supplemented by photographs of the solid 
remaining at the end of the melting period. The mass 
measurements were made with a triple-beam balance 
having a capacity of 2610 g and a resolution of 
0.1 g, while the bath temperatures were sensed by 
the aforementioned certified thermometers. 

A special guarded calorimeter was used for the 
measurement of the liquid bulk temperature. It con- 
sisted of a double-walled, open-topped Styrofoam con- 
tainer whose base was cemented to the bottom of a 

larger plastic container which was also open-topped. 
The annular space between the containers was filled 
with water whose temperature closely approximated 
that of the liquid paraffin, which was situated in the 
Styrofoam container. A nylon rod equipped with two 
thermocouples was used to stir the paraffin. The pro- 
cedure followed in the bulk temperature measurement 
will be described shortly. 

Experimental procedure 
For a given thermal operating condition defined by 

the temperature of the melting environment bath and 
the melting temperature of the solid, the timewise 
increase of the melted mass was measured in a suc- 
cession of independent data runs. The preparations 
for each data run were begun with the containment 
tube empty and with all traces of the paraffin from 
the preceding run eliminated. To begin, one of the end 
caps was put in place, either the finger-equipped cap 
for the centered-mode melting experiments or the flat- 
faced cap for the wall-adjacent-mode experiments. 
Then, the tube was positioned vertically with its open 
(i.e. uncapped) end facing upward in preparation for 
the introduction of liquid paraffin. A sleeve-like exten- 
sion was then affixed to the open end of the tube to 
facilitate the filling operation. 

The tube was filled with liquid paraffin to a height 
about half way up the extension piece, after which it 
was placed in an ice bath. Void formation during the 
freezing of the paraffin was prevented by irradiation 
of its exposed upper surface by a heat lamp set at low 
intensity. After completion of solidification, the upper 
surface of the paraffin was made flat by contact with 
a heated metal disk whose controlled depth of pen- 
etration into the extension piece also fixed the length 
of the solid specimen. Once these operations were 
completed, the extension piece was removed and the 
end cap put in place, after which the tube and its 
contents were weighed. 

The specimen length for the centered-mode melting 
experiments was made exactly equal to the distance 
between the end caps, when both caps were in place 
in the tube. However, for the wall-adjacent-mode 
experiments, the specimens were made about 0.16 cm 
shorter (0.08 cm at each end) than the intercap 
distance. This practice was adopted to avoid tight 
contact between the solid and the end caps, since such 
contact would prevent the free fall of the solid during 
the melting period. The actual clearance which pre- 
vailed at the initiation of melting was less than the 
aforementioned 0.16 cm due to the expansion of the 
solid during the equilibration period. 

The tube and its charge of solid paraffin were placed 
in the equilibration bath for a period of at least 
67 h. During this time, the temperature of the melting 
environment bath was brought to the desired value. 
To initiate the melting period, the tube was transferred 
from the equilibration bath to the melting environ- 
ment bath, a process which was accomplished in about 
10 s. 
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To terminate the melting, the tube was taken from 
the environment bath, and one of the end caps 
was removed. The unmelted solid was immediately 
extracted from the tube and, without delay, the liquid 
melt was poured into the calorimeter, whose water 
buffer had previously been readied. The stirring rod 
was used to mix the liquid and during this time the 
outputs of the thermocouples attached to the rod were 
read and recorded by a pre-programmed datalogger. 
The stirring was continued until the temperature 
attained a steady, uniform value, which usually 
required about 10 s. Attention was then turned to the 
extracted solid, which was wiped free of any adhering 
liquid and then weighed. Representative extracted 
solid specimens were photographed to document 
differences in the centered and wall-adjacent modes 
of melting. 

Data reduction 
The melting results will be reported in terms of the 

amount of mass liquefied between the onset of melting 
(t = 0) and any subsequent time t. This quantity, to 
be denoted by M, was determined from mass measure- 
ments made before and after the melting period. For 
a dimensionless presentation, M will be ratioed with 
the total amount of mass M,,, in the containment tube 
that is available for melting. 

If El is the energy which is absorbed at the solid- 
liquid interface to liquify the mass M, then 

E,=AM (1) 

where 1 is the latent heat of melting. Also, since 
E i,max = AM,,,, it follows that EJEA,,,, = M/M,,,. 
Energy is also supplied to the liquid melt to bring its 
temperature from T * to some higher value. If T,, 
denotes the liquid bulk temperature at a time t when 
the melted mass is M, then the sensible energy E, 
absorbed by the liquid melt between t = 0 and t = t 
is 

where 

E, = ME(T,- T*) (2) 

i=[{;cdT]/(T,-T’). (3) 

Since the specific heat c can be represented as a linear 
function of temperature for n-eicosane paraffin [8], E 
corresponds to (T,+ T *)/2. 

The total energy E,,, transferred from the tube wall 
to the encapsulated phase-change medium between 
t = 0 and t = t is the sum of El and E,, so that 

E,,, = M[I + E(T, - T *)]. (4) 

The maximum value of E,,,, denoted by E,,,, occurs 
when all the solid has melted and the liquid has 
attained the temperature T,, that is 

E InBX = M,,,[L + Z( T, - T *)] (5) 

where E now corresponds to (T, + T *)/2. The energy 

transfer results will be presented both in terms of 

.%I&,, and -%I&. 
The duration t of the melting period will be rep- 

resented in dimensionless terms as the FoSte product, 
where the Fourier number Fo and the Stefan number 
Ste are defined as 

Fo = at/R?, Ste = c(T,- T*)/l (6) 

in which R is the radius of the tube bore. The Stefan 
number also serves as a dimensionless representa- 
tion of the bath-to-melting temperature difference 
(T,,,- T*). Another dimensionless group used in the 
presentation of results is the Rayleigh number 

Ra = gjfJ(T,- T*)R’/uv. (7) 

The temperature used for the evaluation of the ther- 
mophysical properties of the liquid that appear in 
equations (6) and (7) will be noted when the results 
are presented. 

NUMERICAL SOLUTIONS 

As noted in the Introduction, one of the objectives 
of the present work is to determine the individual 
contributions of the melting at the lower and upper 
surfaces of the solid to the overall melted mass M 
for the wall-adjacent mode. The melting at the lower 
surface is controlled by conduction across a thin, 
liquid-filled gap, while that at the upper surface is 
controlled by natural convection in a relatively larger 
pool of liquid. The approach to be used here is to 
obtain numerical solutions for the natural convection 
problem, use this information to compute the melting 
at the upper surface, and then compare this quantity 
with the overall melted mass that was measured in the 
experiments. 

Computational model and boundary conditions 
To facilitate the description of the analysis, refer- 

ence may be made to Fig. 1, which is a schematic 
diagram of the tube cross section at a representative 
time t. As seen there, the solid is lens-shaped and is 
situated at the bottom of the tube, with a narrow gap 
between the solid and the tube wall. The lens shape 

TUBE +- ’ 

T H 
I C 

FIG. 1. Schematic diagram of the tube cross section and 
superposed finite-difference grid. 
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portrayed in the figure is a true representation of the 

cross section of the solid, as witnessed by observations 
made during the experimental portion of the work. 
These observations were facilitated by sectioning the 

solid at several axial locations after its withdrawal 
from the tube at the end of the melting period. The 
outlines of the cross sections thus exposed were traced 
on paper to provide a permanent record. 

The aforementioned experimental observations 
yielded two highly relevant facts : (1) there were no 
axial variations of the thickness or shape of the solid 
for the wall-adjacent melting mode ; and (2) the radius 
of the upper surface of the solid was equal to that of 
the tube radius, within measurement accuracy. Note 
that the latter finding is in accord with those of ref. 

[7], while the former suggests that the problem can be 
treated on a two-dimensional basis. 

During the melting process the solid-liquid inter- 

face recedes, so that the size of the liquid-filled space 
above the upper surface of the solid increases with 
time. However, the change in the size of the space 

is slow compared with the capability of the natural 
convection to accommodate the change. Therefore, 
the numerical analysis of the natural convection will 

be made on a quasi-steady basis. In particular, the 
steady-state natural convection problem will be solved 
for each of a succession of fixed-geometry, liquid- 

filled spaces, each defined by the pre-assigned height 
H of the cross-section symmetry line AB (see Fig. 1). 

Owing to symmetry, only half the liquid space need 
be considered for the numerical analysis. In Fig. 1, 
the half space is bounded by ABDA. The segments 
BD and AD are both circular arcs of radius R, which 
suggests the use of (r, 0) polar coordinates. However, 

the origins from which the two arcs are drawn are 
different, so that BD and AD cannot both be coor- 
dinate lines in a single (r, 0) coordinate system. Since 
the heat transfer rate at the solid-liquid interface is of 
primary interest, and since AD coincides with the 
interface, it is natural to use a coordinate system in 
which AD is a coordinate line. Consequently, the ori- 
gin of the coordinate system was chosen to coincide 
with the origin from which the arc AD is drawn (with 
radius R). Such a coordinate system is illustrated in 
Fig. 1. 

Also illustrated in the figure is an array of control 
volumes used to implement the finite-difference work. 
To maintain clarity, a 13 x 13 array ( = 169) is shown, 

whereas the actual numerical work was performed 
with a 30 x 30 array (= 900). Note that the arc BD 
does not lie along the control volume boundaries but, 
rather, it cuts through the control volumes-a logical 

outcome of the choice of the origin of coordinates. 
In a situation like this, it is common to approximate 

the actual boundary (i.e. BD) by a stepped boundary 
in which the steps are the sides of the control volumes 
cut by the actual boundary. Fortunately, with a dense 
array of control volumes such as the 30 x 30 array 
used here, the stepped boundary is a good approxi- 
mation of the actual boundary. The layout of the steps 

was performed systematically (rather than intuitively) 

as described in ref. [9]. 

The general purpose finite-difference algorithm 

[lo] used here is not able to accommodate directly 
the stepped boundaries. Consequently, the solution 
domain was artificially extended so that its outer 
boundary would lie on a coordinate line and would, 
therefore, be free of steps. This extension resulted in 

a solution domain bounded by ABCDA in Fig. 1. 
The extended solution domain contains a number of 
control volumes which lie outside the actual domain. 
The procedure used to deactivate the additional 
control volumes will be described shortly, after the 
boundary conditions have been discussed. 

With regard to the boundary conditions, it is necess- 

ary that they reflect the fact that there is a throughflow 
of liquid through the solution domain. The liquid 
enters the domain adjacent to point D, coming from 
the mouth of the gap which bounds the lower surface 
of the solid, and it exits via a port centered at point 

B. The rate of inflow will be provided to the computer 
program as an input, determined from the experi- 
mental data by a procedure soon to be outlined, while 
the rate of outflow was made equal to the rate of 
inflow. 

Aside from the aforementioned exit port, the 
boundary conditions on the actual boundary BD of 
the solution domain are : (a) zero r and 0 velocities ; 
and (b) temperature = T,. Note that the latter 
neglects the small temperature drop across the bound- 
ary layer external to the tube. In the numerical model, 
these boundary conditions were applied at the bound- 
aries BC and CD of the extended solution domain. 

Furthermore, in all of the additional control volumes 
associated with the extended domain, the viscosity p 
and the thermal conductivity k were set equal to infin- 
ity. These choices for p and k automatically impose 
boundary conditions (a) and (b) on the stepped 
boundary approximation of BD. 

At the exit port, the boundaries BC and BD are 
virtually coincident. At this part of the boundary, the 
velocity was constrained to be radial and the tem- 
perature was set equal to T,. The velocity was 
adjusted to satisfy an overall mass balance, as noted 
earlier. On the symmetry line AB, the usual symmetry 
boundary conditions apply: (c) zero 6’ derivatives of the 
r velocity and the temperature; and (d) zero 0 velocity. 

Along the surface AD of the solid, aside from the 
inflow zone adjacent to point D, the zero velocity 
condition (a) applies, and the temperature = T* 
(melting temperature). It remains to determine the size 

of the inflow zone and the velocity of the inflowing 
fluid. To begin the determination, it will first be 
assumed that the gap which separates the lower sur- 
face of the solid from the tube wall is of uniform 
thickness w. It is further assumed that the heat transfer 
across the gap is by one-dimensional conduction. Then, 
if dM/dt denotes the rate of melting, it follows that 

i(dM/dt) = k&,&T,, - T*)lw (8) 



1012 E. M. SPARROW and G. T. GEIGER 

or 

w = kA ,,,,,(T, - T *)ll(dMldt) (9) 

where A~,,,, is the area of the lower surface of the solid 
which bounds the gap. A typical value of w computed 
from equation (9) is 0.04 cm. 

The RHS of equation (8) is the heat transfer across 
the gap so that, strictly speaking, dM/dt should cor- 
respond to the rate of melting at the surface which 
bounds the gap. However, only dM/dt for the entire 
solid (both upper and lower surfaces) is available from 
the experimental data, so that that information will be 
used as input to equation (Y). It will be seen later that 
this approach does not lead to significant errors. With 
w from equation (9), the mean velocity Vat the mouth 
of the gap is 

V = (dM/dt)/ZpwL (10) 

where the 2 in the denominator reflects the fact that 
the gap has two mouths and L is the axial length of 
the solid. 

Consideration was also given to the possibility that 
the gap thickness may vary circumferentially. Inspec- 
tion of the paraffin samples from the experiments 
suggested that the gap thickness increased in the direc- 
tion from the low point of the solid to the mouth. The 
simplest representation for such a change is that the 
thickness varies linearly, starting with zero thickness 
at the low point and culminating in a thickness at 
the mouth which is twice the average value given by 
equation (9). The velocity V at the double-thickness 
mouth is half of that given by equation (10). 

Numerical solutions were carried out both for 
inflow zones of width MJ [equation (9)] and 2w. As 
noted earlier, the inflow zone is situated adjacent to 
point D on arc AD (Fig. 1). The finite-difference grid 
was laid out so that two control volumes were 
developed circumferentially across the opening of the 
mouth of the gap. The velocity V at the mouth was 
resolved into r and 0 velocity components. A linear 
temperature distribution was assumed to prevail 
across the mouth. 

The actual grid deployment used in the com- 
putations will now be discussed. A common radial 
dimension was used for all control volumes. The cir- 
cumferential dimension of the control volumes adjac- 
ent to the symmetry line AB was chosen to match the 
size of the exit port which is centered at point B. In 
turn, the exit port size for the computations was made 
equal to that of the experimental apparatus. The cir- 
cumferential extent of the control volumes adjacent 
to the line CD was governed by the size of the gap 
mouth. Aside from the aforementioned control vol- 
umes adjacent to AB and CD, the circumferential 
dimensions of all the other control volumes were 
identical. As noted earlier, a grid composed of an 
array of 30 x 30 control volumes was used. 

Governing equations 
The governing differential equations which express 

the conservation laws were written in accordance with 

the quasi-steady model, excluding terms involving 
a/at. The density differences which create the natural 
convection flow were represented by the Boussinesq 
approximation, but aside from this, all other prop- 
erties were assumed to be constant. To achieve a com- 
pact presentation, the following notation will be used 

alar = a,, ajae =a,, ayae2 = a;. (11) 

The radial velocity component will be denoted by u 
and the tangential velocity component by U. 

The mass, r-momentum, &momentum and energy 
equations will now be written as they are needed for 
the general purpose computer program of [ lo] 

a,(ru)+a,+ = 0 (12) 

p[u a,u+(v/r) a,4 = -a,p+(p/r) Z,(r 3,~) 

+(p/r’) ah+8 (13) 

P]U a,u+(v/r) a.+] = -(1/r) %P 

+(p/r) &(r&v)+(p/r2) asZo+S8 (14) 

PC& a,T+ (o/r) a,g = (k/r) a,(r V) 

+(k/r2) &fT. (15) 

All terms in the foregoing equations except the 
source terms .S, and SB are already reduced to finite- 
difference form in the computer program of ref. [lo]. 
The source terms are 

S, = -@g,T+pv*/r-ptu/r2-(2p/r?) a,v (16) 

SB = -p/3gsT-pm/r-pv/r2+(2p/r2) aBu (17) 

in which g, and gs are the r and 0 components of the 
gravity vector. The components of the source terms 
were discretized by using a central difference approxi- 
mation for derivatives and linearly interpolating the 
dependent variables at non-gridpoint locations. 

The solutions of the finite-difference equations were 
obtained using the SIMPLE algorithm [lo]. To im- 
prove the rate of convergence, the block correction 
procedure of ref. [l l] was incorporated into the 
computer program. 

Melting rates 
Attention will now be turned to the application of 

the numerical solutions to the determination of the 
rate of melting at the upper surface of the solid. Let 
q1 denote the rate of heat transfer per unit area at 
position 19, on the surface, where q, was determined 
from the solutions by making use of the finite-differ- 
ence form of Fourier’s law. If q, pertains to a control 
volume which subtends an angle A@, on the upper 
surface of the solid, then the rate of heat transfer Q 
at the entire surface is 

Q = 2x q,RAO,L (18) 

where the sum extends over all the control volumes 
which contact the surface. The factor 2 appearing in 
equation (18) takes account of the symmetric portion 
of the upper surface which is not included in the sum. 
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The rate of melting at the upper surface then follows 
from equation (18) as 

Il;luppcr = Qll. (19) 

Also, qi can be used to evaluate a local Nusselt number 
from the defining equation 

Nu = MT,-- T*)lNk (20) 

The sensible energy stored in the liquid can be deter- 
mined by evaluating the bulk temperature Tb from the 
finite-difference form of the integral definition 

(21) 
LJ _I/ LJ A 

The integration extends over the control volumes 
within the original solution domain (excluding the 
additional control volumes of the extended solution 
domain). Once Tb is available, Es follows from equa- 
tion (2) and E,,, from equation (4). 

PAlTERNS OF MELTING 

The description of the patterns of melting is facili- 
tated by reference to the photographs displayed in 
Figs. 2 and 3. The first of these figures conveys rep- 
resentative end views of the melting solid, respectively 
for the centered mode in part (a) and the wall-adjacent 
mode in part (b). Figure 3 shows representative longi- 
tudinal views for both the centered mode [parts (a) 
and (b)] and the wall-adjacent mode [part (c)l. 

Centered mode 
Attention will first be turned to the centered mode. 

In the end view [Fig. 2(a)], there are radial lines which 
emanate from a point situated in the upper part of the 
solid. Since this point coincides with the center of 
the tube, it is apparent that more melting occurs on 
the upper surface of the solid than on the lower 

FIG. 2. End views of melting solid. 

surface. This is as expected, since natural convection 
delivers warmer fluid to the upper portion of the tube 
cross section and cooler fluid to the lower portion. 
Indeed, in each vertical half of the liquid melt, a gen- 
eral recirculation can be envisioned in which the liquid 
rises along the tube wall and descends along the solid. 

It is also evident from Fig. 2(a) that the melting 
solid is by no means circular in cross section. In par- 
ticular, the flattened sides of the lower part of the 
cross section suggest that there are fluid flows present 
other than the aforementioned general recirculation. 
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In this regard, it may be noted that the liquid melt physical properties appearing in Fo and Ste were 
situated between the lower portions of the tube and evaluated at the melting temperature T *. As seen 
the solid is in a thermally unstable state since the from the figure, the decrease of N with time is rapid 
temperature of the former (- TJ exceeds that of the at first but becomes increasingly more gradual as time 
latter (T*). It is well known that such an unstable proceeds. For the most part, the data are not very 
state gives rise to cellular convection, which is sensitive to Ste, nor is there a consistent ordering with 
generally three-dimensional. str. 

To examine this issue, it is helpful to turn to Fig. 

3(a), which is a longitudinal view of the melting solid 
of Fig. 2(a). The photograph shown in Fig. 3(a) was 
taken from the side, with the lower edge of the photo 
coinciding with the bottom of the solid and the upper 
edge of the photo coinciding with the top of the solid. 
As can be seen in the figure, the bottom of the solid 
is by no means smooth. Rather, it is characterized 
by nearly periodic undulations consisting of successive 
peaks and valleys. These undulations reflect the pres- 
ence of a cellular, periodic, three-dimensional flow. 

This three-dimensional flow affects the entire lower 
half of the solid, not just the very bottom, as witnessed 

by Fig. 3(b)-a longitudinal view looking upward at 
the solid from below. The alternating white and black 
bands respectively correspond to the aforementioned 

peaks and valleys [note that both Figs. 2(a) and 3(b) 
reflect a modest asymmetry at the lower sides of the 
solid, which is not unexpected in light of the thermal 

instability]. 

The existence of axial variations in the thickness of 
the melting solid [Figs. 3(a) and (b)] suggests that end- 
view-based photographic methods for determining 
the instantaneous mass of the solid be used with 
caution, especially for the centered mode. For 

instance, in refs. [4, 51, the mass was deduced by meas- 
uring the area of the solid from end-view photographs 
such as that of Fig. 2(a). However, looking lengthwise, 
such a photographic view sees only the highest points 
of the solid but not the low points. Therefore, such 
an approach tends to underestimate the amount of 
melted mass. For instance, for Fig. 2(a), there is about 
an 11% difference in the thickness of the solid between 
the high and low points. Another possible source of 
underestimation is that possible additional melting 
adjacent to the ends of the solid is not recognized by 
the photographic approach. 

For given thermal operating conditions [i.e. given 
(TW - r*)], it was observed that the longer the dur- 
ation of the melting period, the fewer the cells and the 
greater the axial extent of each cell. Also, since the 
distance between the solid and the tube wall increases 
with the duration of the melting period, the greater is 
the radial extent of the cells. Therefore, the aspect 
ratio of a cell (ratio of axial to radial dimensions) 
tends to remain constant, which is consistent with 
literature information for cellular convection. 

Three-dimensional motions in natural convection 
flow in horizontal annuli of fixed dimensions (i.e. with- 
out phase change) have been encountered in the pub- 
lished literature [12-141. It would appear that the 
present flow pattern is akin to the three-dimensional 

spiral flow described in ref. [12]. However, the three- 
dimensional spiral flow patterns photographed in ref. 
[13] and more recently in ref. [I 51 included three- 
dimensional motions in the thermally stable portion 
of the annulus (i.e. the upper part of the annulus) as 
well as in the thermally unstable region. However, for 
the present situation, there was no indication of three- 
dimensionality in the stable region. 

The timewise variation of the number of cells N was 

determined for each thermal operating condition, and 
this information is presented in Fig. 4. On the 
ordinate, the number of cells is plotted per unit tube 
length L (normalized by the tube radius R), while the 
abscissa is the FoSte dimensionless time. The data are 
parameterized by the Stefan number Ste, which is the 
dimensionless counterpart of (r, - T*). The thermo- 

The issue of whether the present cellular pattern 
consisted of hexagonal cells or roll cells cannot be 
resolved with total certainty. However, from the 

results of refs. [16, 171 for convective instability 
between horizontal parallel plates, it appears that roll 
cells are more likely (see ref. [9] for a more complete 
discussion of this issue). 

Ste 
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FIG. 4. Number of cells deployed along the length of the 
melting solid (centered mode of melting). 

Wall-adjacent mode 

The end-view photograph for the wall-adjacent 
mode, Fig. 2(b), displays the lens shape that was 
alluded to earlier. Both the upper and lower surfaces 
of the solid may be well represented by circular arcs 
of nearly equal radii. Furthermore, both surfaces are 
smooth and are uniform in the axial direction. In 
confirmation of this, a longitudinal view of the solid 
is presented in Fig. 3(c), with the photograph taken 
looking upward from below. The dark stripe which 
runs the length of the photo is at the original centerline 
of the solid and reflects the fact that that line was the 
last portion of the solid to freeze during the pre-run 
preparation of the test specimen. 

All of the extracted solid samples for the wall- 
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adjacent mode of melting indicated that the fluid 
flow in the liquid melt was two-dimensional. 

MELTED MASS 

Comparisons of the modes of melting 
The experimentally determined timewise variations 

of the melted mass for both the wall-adjacent and 
centered modes of melting are presented in Fig. 5. On 
the ordinate, the mass M melted between t = 0 and a 
later time t = t is plotted as a ratio with the total mass 

M,,, in the tube that is available for melting. The 
abscissa is the dimensionless time FoSte, while the 
data are parameterized by Ste, which is the dimen- 
sionless counterpart of the overall temperature differ- 
ence (T, - T *). Again, the thermophysical properties 
of the liquid are evaluated at T *. 

An overview of Fig. 5 indicates that substantially 
greater amounts of melting occur in the wall-adjacent 
mode than in the centered mode-i.e. when the solid 
is free to fall to the bottom of the tube than when it 
is constrained. Depending on the value of Ste, the M 
values for the former mode may exceed those for the 
latter mode by 5&100%. This qualitative relationship 
between the two modes of melting is not unexpected, 
but the comparison conveyed by Fig. 5 is believed to 
be the first demonstration of the quantitative relation- 
ship between the modes. Clearly, to achieve rapid 
phase change, the melting solid should not be con- 

strained. 
The decisive difference between the two modes of 

melting lies in the difference in the mechanisms by 
which heat is transported from the tube wall to the 
solid-liquid interface. The centered mode depends on 
natural convection to convey the heat across a mod- 

erately thick liquid layer, while in the wall-adjacent 
mode the heat transfer is primarily accomplished by 
conduction across a narrow gap. 

These different transfer mechanisms are reflected in 
the Stefan number dependences of the M/M,,, results, 
as can be seen in Fig. 5. In the wall-adjacent case, 
the dependence is weak, with M/M,,, decreasing very 
slightly with increasing Ste at a fixed value of FoSte. 

This behavior is exactly that encountered in classical 
Stefan melting, which is a pure conduction problem. 
The Stefan solution shows that at a fixed FoSte, 
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FIG. 5. Comparison of melting in the centered and wall- 
adjacent (i.e. constrained and unconstrained) modes. 

M respectively decreases by about 1% and 4% for 

Ste = 0.06 and 0.25, relative to the Mvalue at Ste = 0. 

This occurs because the larger sensible heat absorp- 

tion in the liquid which is associated with larger Ste 
makes less heat available for the phase change. 

In contrast to the foregoing, the M/M,,, values for 
the centered case are quite sensitive to Ste and increase 
as Ste increases. To rationalize this behavior, it should 
be noted that in this case, Ste serves much more as an 
index of the strength of the natural convection [i.e. 
Ste N (TW- T*)] than as a measure of the sensible 
heat absorption. Thus, as Ste increases, so does the 
vigor of the natural convection, with a corresponding 

increase in M/M,,,. 

Comparison of each mode with the literature 

The present results for each of the melting modes 
will now be compared with the literature, with 
consideration being given to the centered and wall- 
adjacent modes in that order. 

For the centered case, the usable literature infor- 
mation is that of refs. [4, 51. In both of those investi- 
gations the phase change medium was n-octadecane 
paraffin, and the melted mass was determined photo- 
graphically as described earlier. In contrast, n- 
eicosane was the present phase change medium, and 
the melted mass was found by direct measurements. 

It has been found that the effect of natural con- 
vection on the melting results can be taken into 

account by replacing FoSte with either FoSteGr” or 
FoSteRa”, where Gr and Ra respectively represent the 

Grashof and Rayleigh numbers. In ref. [5], a cor- 
relation was achieved using the latter form with 
n = l/5 and, in addition, Ste was replaced by (Ste)* 

to account for possible initial subcooling ATsub of the 
solid below the melting temperature, where 

(Ste)* = Ste/(l + S,), S, = c,,,ATJL. (22) 

In Fig. 6, the present M/M,,, data for the centered 
mode have been replotted using the Fo(Ste)*Ra’/j 

abscissa variable suggested by ref. [5]. The slight initial 
subcooling used in the experiments yielded an S, value 
of 0.00388. Furthermore, in deference to ref. [5], the 
liquid properties were evaluated at a temperature 
(T,+ T *)/2. Inspection of the figure shows that the 
data (the open symbols) have been brought together 
in a tight band and the separate dependence on Ste, 
which was in evidence in Fig. 5, has been eliminated. 

The solid line in Fig. 6 is a least-squares fit of 

the experimental data of ref. [5, equation (15)]. Also 
appearing in the figure are data (black symbols) from 
ref. [4], uncorrected since S, << 1. The fact that the 
literature data lie below those of the present exper- 
iments is expected in light of the foregoing discussion 
of the photographic technique used in refs. [4, 51 for 
the determination of M. Another factor which con- 
tributes to the deviation is the accuracy of the 
measurement of the cross-sectional area of the solid 
from the photographs which, according to ref. [5], has 
a 5% uncertainty. Also, uncertainties in the thermo- 
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FIG. 6. Comparison of centered (i.e. constrained) melting 
results with the literature. 

physical properties of the participating liquids, 

n-eicosane and n-octadecane, may be another cause 

of the deviation in evidence in Fig. 6. 

Attention is now turned to a comparison of the 
present results for the wall-adjacent mode with the 
literature. In ref. [7], a semi-predictive equation was 

derived for the timewise variation of the melted mass. 
In order to use this equation, the value of FoSte at 

which M/M,,, = 1 is needed. Here, by fairing a curve 
through the M/M,,, vs FoSte data, the required value 
of FoSte was found to be 0.0319. However, for design, 
where the M/M,,, = 1 value of FoSte is unknown, the 
equation cannot be used. 

Figure 7 shows the present data (with properties 
evaluated at T *) along with the aforementioned semi- 
predictive equation. Good agreement is seen to prevail 
at larger values of FoSte, but there is a difficult-to- 
rationalize tendency for deviations at lower FoSte. 

The data of ref. [7] appear to be well represented by 
the semi-predictive equation. 

MELTED MASS DISTRIBUTION 

FOR WALL-ADJACENT MODE 

As described earlier in the paper, the numerical sol- 
utions yielded the rate of melting I\jUpper at the upper 
surface of the solid for the wall-adjacent mode. In 
addition, values of the overall rate of melting n;/ (at 
both surfaces) were obtained from the experimental 
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FIG. 7. Comparison of wall-adjacent (i.e. unconstrained) 
melting with the literature. 
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FIG. 8. Comparison of lower-surface rate of melting with 
overall rate of melting (wall-adjacent mode of melting). 

data both by graphical and numerical techniques. 
From this information, the ratio ti,,,,,/ti was 
formed at a succession of FoSte values for each of 
the four investigated Ste. Since it was thought to be 
of greater relevance, ti,,Jti = 1 - (ti,,,,,/n;r> will 

be presented, where ti,,,,,., is the rate of melting at the 
lower surface. 

In Fig. 8, ti,,,,,/ti is plotted vs FoSte for the lowest 
and highest of the investigated Ste (the results for the 
intermediate Ste are available in ref. [9]). Results are 
shown for solutions based on the two adopted models 

of mass flow into the natural convection zone, 
namely: (a) an inflow opening equal to the average 
thickness w of the gap between the lower surface of 
the solid and the tube wall ; and (b) an opening equal 
to twice the average thickness. 

Inspection of the figure shows that the rate of melt- 
ing at the lower surface is in the range 88-94% of the 

overall rate of melting. Thus, the conduction-based 
melting at the lower surface fully dominates the 
natural-convection-based melting at the upper sur- 
face. The aforementioned range is similar to the 85 
90% suggested in ref. [7] on the basis of approximate 
experimental determinations. Further inspection of 
the figure shows that &t,,,,Jti is little affected by the 

model used for the mass inflow opening. 
The distribution of the local Nusselt number 

[equation (20)] along the upper surface of the melting 
solid was also determined from the numerical solu- 
tions. A representative sample of the computed dis- 
tributions, in the form of Nu vs 8, is displayed in Fig. 
9, which corresponds to Ste = 0.124. An inset at the 

8 (DEGREES) 

FIG. 9. Representative local Nusselt number distributions 
along the upper surface of the solid (wall-adjacent mode of 

melting). 
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FIG. 10. Representative streamlines and isotherms 
adjacent mode of melting). 

(wall- 

upper left of the figure shows the position of the upper 

surface for each of the selected cases designated as I, 
II and III, for which the FoSte values are 0.008, 0.016 
and 0.024. The ~9 coordinate is illustrated in Fig. 1, 
with 8 = 0” corresponding to the cross-section sym- 
metry line AB. 

The figure shows that with increasing angular 
distance from the symmetry line, Nu tends either to 
decrease or remain nearly constant. At still larger 
angular positions, the Nusselt number increases 
markedly. This increase can be attributed primarily 
to the growth of the heat conduction between the 
surface of the solid and the tube wall, a growth 
brought about by the decrease in the distance between 
the surface and the wall. 

Representative streamlines and isotherms are 
presented in Fig. 10. The figure corresponds to 
Ste = 0.124 and to FoSte = 0.016 (i.e. case II of Fig. 
9). Owing to symmetry, the streamlines need to be 
shown in only one half of the cross section and simi- 
larly for the isotherms. The streamlines display a recir- 
culating flow of the type that is expected for natural 
convection. The wall-adjacent streamline is seen to be 
perturbed by the stepwise approximation of the tube 
wall, but the streamlines away from the wall are 
smooth. It may also be observed that the throughflow 
moves through the space along a wall-adjacent path 
and does not appear to mix with the recirculating flow. 
The isotherms pinch together in the inflow opening, 
indicating the presence of large temperature gradients 
and high heat transfer rates in that neighborhood. 

ENERGY QUANTITIES 

The energy input El required to melt the mass 
M is available from Fig. 5, since, as noted earlier, 
Ei = X14,,,(kf/M,,,). To evaluate the energy input Es 

required for the increase in the sensible heat of the 
liquid melt, the liquid bulk temperature Tb is needed. 
The experimentally determined bulk temperatures are 
plotted in dimensionless form in Fig. 11 as a function 
of the FoSte dimensionless time. The data for the 
centered mode are plotted as such, while for the wall- 
adjacent mode, where the data are compact and show 
no consistent trend with Ste, a representative line is 
shown. Indeed, even for the centered mode, the data 
are insensitive to Ste, except for the lowest Ste. The 
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FIG. 11. Measured values of the liquid bulk temperature. 

separation of the latter data from the others is believed 
to be due to the less vigorous natural convection for 
that case. 

For both modes of melting, the bulk temperature 
increases with time.The rate of increase is moderated 
by the continuous addition of new liquid at tem- 
perature T * to the melt. The bulk temperatures for 
the wall-adjacent mode exceed those for the centered 
mode and the rate of increase is greater. This behavior 
may be attributed to the fact that for the former, most 
of the heating of the liquid occurs in the narrow gap 
adjacent to the lower surface of the solid. This heating 
is more efficient than that which occurs in the rela- 
tively large annular space which separates the solid 
and the tube wall in the centered mode. 

The experimentally determined bulk temperatures 
for the wall-adjacent mode may be compared 
with those evaluated from the numerical solutions. 
However, a comparison with more physical content 
can be made in terms of Es/E,. Such a comparison 
is displayed in Fig. 12, where Es/E, is plotted as a 
function of FoSte for parametric values of Ste. 

An overall inspection of the figure shows good 
agreement between the experimental and numerical 
results. For example, for Ste = 0.248, the maximum 
deviation is 7%. It is also seen that Es/E, is larger 
at higher values of Ste, which is consistent with the 
interpretation of the Stefan number as a measure of 
the ratio of the sensible heat to the latent heat. As time 
proceeds during the melting period, Es/E, increases for 
all Stefan numbers. 

From the energy standpoint, the quantity of 

F&e 

FIG. 12. Comparison of experimental and numerical results 
for Es/E, (wall-adjacent mode of melting). 
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FIG. 13. Total (latent plus sensible) energy transferred in the 
wall-adjacent and centered modes of melting. 

greatest practical relevance is the &,/Em,, ratio, 
which measures the fraction of E,,, that is transferred 
between t = 0 and t = t. The E1,,/E,,, results are pre- 
sented in Fig. 13 for both the wall-adjacent and cen- 
tered modes. Overall, there is a strong resemblance 
between Fig. 13 and Fig. 5, which is as it should 
be since the latent heat contributions iM and LM,,, 
respectively dominate E,,, and E,,,. Therefore, the 
trends that were identified in connection with Fig. 5 
also pertain to Fig. 13. 

The main practical message of Fig. 13 is the superi- 
ority of the wall-adjacent mode as a means for the 

rapid transfer of energy. For instance, whereas E,,,/ 

E,,, g 0.5 is achieved at FoSte = 0.014.0115 for 

the wall-adjacent mode, it is not achieved until 
FoSte = 0.021-0.027 for the centered mode. There- 

fore, if rapid energy transport is the objective of the 
design, it is appropriate to use the wail-adjacent mode 
rather than the centered mode. 

CONCLUDING REMARKS 

The work described here has provided a definitive 
comparison between melting in a horizontal tube in 
which the solid is either constrained to be stationary 

or may freely fall to the bottom of the tube due to 
gravity. At a given duration of the melting period, the 
amount of mass melted in the unconstrained mode 
exceeded that melted in the constrained mode by 5& 
lOO%, depending on the operating conditions. Similar 
gains occurred in the amount of energy transferred 
from the tube wall to the phase-change medium. 
Therefore, from the standpoint of the attainment of 
rapid energy transfer, the unconstrained mode of 
melting is clearly superior. Numerical solutions 
showed that about 90% of the melting in the uncon- 
strained mode occurred at the lower portion of the 
solid, which is in very close proximity to the lower 
portion of the tube wall. 

Photographic evidence was presented to demon- 

strate that the melting process in the contrained 
mode is intrinsically three-dimensional due to three- 
dimensional motions in the liquid melt. On the other 
hand, in the absence of end effects, the unconstrdined- 
mode melting is two-dimensional. 
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FUSION DANS UN TUBE HORIZONTAL AVEC LE SOLIDE LIBRE 
OU NON DE TOMBER PAR GRAVITATION 

R&nt~Des experiences et des solutions numeriques supplementaires sont conduites pour Ctudier la 
fusion dun solide encapsule dans un tube horizontal. Dans une s&e d’experiences, le solide ne peut pas 
se d&placer tandis que dans une seconde le solide peut tomber librement en gravitation. Dans ce demier 
cas la portion inferieure du solide est separee du tube par un mince film liquide. Les solutions numeriques 

permettent de determiner la vitesse de fusion dans les portions basse et haute du solide libre. A une periode 
donnee de la fusion, la quantite de masse fondue d&passe ce qui serait fondu dans le cas non libre de 50 a 
100 pour cent, avec un gain semblable dans le transfert d’energie. Pour le mode libre, environ 90 pour cent 
de la fusion se produit a la partie basse du solide. Une observation photographique montre que le mecanisme 
de fusion non libre est intrinsequement tridimensionnel, tandis qu’en l’absence des effets de bout la fusion 

libre est bidimensionnelle. 

SCHMELZEN IN EINEM HORIZONTALEN ROHR MIT FESTGEHALTENER 
ODER FREIER FESTER PHASE 

Zusammenfassung-Versuche und erglnzende numerische Berechnungen wurden iiber den Schmelzvorgang 
eines Mediums in einem waagerechten Rohr durchgefuhrt. In der ersten Versuchsreihe wurde die feste Phase 
festgehalten, in einer zweiten konnte sie sich unter dem Einflug der Schwerkraft frei bewegen. Im letzteren 
Fall wurde der untere Teil der festen Phase durch einen engen, fltissigkeitsgeftillten Spalt von der Rohrwand 
getrennt. Mit Hilfe der numerischen Liisung konnte das Schmelzverhalten oben und unten an der frei beweg- 
lichen festen Phase bestimmt werden. Nach einer bestimmten Schmelzzeit war im Fall der frei beweglichen 
festen Phase 50% bis 100% mehr Material geschmolzen als bei festgehaltener fester Phase. entsmechend mehr 
Wlrme wurde tibertragen. Im frei bewegichen Fall schmolz 90% des Materials an der unteren Halfte der 
festen Phase. Fotografien zeigen, dal3 der SchmelzprozeB im festgehaltenen Fall dreidimensional, im frei 

beweglichen Fall bei genugend langem Rohr zweidimensional ist. 

l-I_JIAB_JIEHME HAXOJDIlIIEl-OCR B 1-OPM30HTAJIbHOH TPY6E TBEPAOl-0 TE_JlA 
B PE)KKMMAX 3AKPEIIJIEHMA M CBOEiOAHOI-0 nAAEHMR 

AHHOTaUHn-BbmOnHeHbI 3KcnepaMeHTbl I( wicneHHbre pacseTb1 no a3yrewiw nnai3neHw Tsepnoro 

Tena, 3aKnwieHHoro B rope30HTanbHyw Tpy6y. B 0nHkix 3KcnepeMeHTax Taepnoe Ten0 3aKpennnnocb 

HenOABAnoiO BHyTpU TPy6b1, B ApyruX OH0 Morn0 CEiO6OAHO uepeMemaTbCR uOA AekTBAeM CHnbl 

TsnrecTu. B nocnenHeMcnyvae~&imHaa~acTbTBepnoroTena 6bInaoTneneHao~cTeHKIiTpy6bI~0~KH~ 

cnoeM wiAxocTu. ZIecnemibre pacseTbr n03Bonm~ 0npenenRTb cKopocTB nnaenewui B BepxHeii A 

HsmHek o6nacTnx uesaKpenneHHor0 TsepAoro rena. IIpu 3anaHHoii nnnrenbiiocru nepuona nnasneuwx 

xonmiecrao pacnnasuemeAcn Maccbr a ue3axpenneuuoM o6paaue npeeocxoneno cooraercrayiomee 
XonwrecTBo B 3aKpenneHHoM ria 50-lOO%, aHanorwiH0 pa3nwianca H 3HepronepeHoc. B uesaxpenneu- 
HOM pemubfe obono 90% pacnnaaawretica Maccbr Haxonunocb B HwKHel YacTn Tsepnoro Tena. Ilony- 

geHHbre +oTorpa@ru ceuneTenbcTeyroT, ST0 npA 3aKpenneHae Tsepnoro Tena npouecc nnaenewwi 

rmnaeTca cymecTBeHH0 TpexMepHbIM, B TO apeMa xab B pemuhie CBO60AHOrO naneser, ecm rIpeHe6peqb 

KpaeBblMH +$eKTaMII,OH AMeeTiIByMepHbIX XapaKTep. 


